
System analysis of multilane traffic flow models with different lane 

changing motivations 

D. A. PESTOV1,2, M. N. SMIRNOVA1, V. F. NIKITIN1,2, V. V. TYURENKOVA1,2, ZUOJIN 
ZHU3 

1. Faculty of Mechanics and Mathematics, Moscow M.V.Lomonosov State University, 
Moscow, RUSSIA 

2. Federal Science Center “Scientific Research Institute for System Analysis”, Russian 
Academy of Sciences, Moscow, RUSSIA 

3. Faculty of Engineering Science, USTC, Hefei, 230026, CHINA 
marija_smirnova@lenta.ru 

Abstract – The present research was aimed at mathematical modeling of essentially unsteady-state 
traffic flows on multilane roads, wherein massive changing of lanes produces an effect on handling 
capacity of the road segment. The model takes into account drivers’ motivations for lane changing 
before the crossing caused by the necessity of the maneuver on entering multilane road crossing. The 
model is based on continua approach. However, it has no analogue in the classical hydrodynamics 
because momentum equations in the direction of a flow and in orthogonal directions of lanechanging are 
different. To provide stability and accuracy of the numerical solution we use the computation method 
common to gas dynamics. Numerical simulations of traffic flows in multilane roads were performed and 
their results are presented.  
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1. Introduction 
Traffic flows have been widely studied 

due to significant impacts on economic activities 
and travel time. Therefore, many macroscopic 
traffic models have been developed to define 
characteristics and properties of traffic flows, for 
instance, the LWR model [1, 2], the Euler 
model [3], the gas-kinetic-based model [4, 5], 
the Navier-Stokes like model [6], the class of 
second order models [7, 8], and the generic 
model [9, 10]. 

Greenberg [7,11] analyzed a class of 
second-order traffic models and showed that 
these models support stable oscillatory traveling 
waves typical of the waves observed on a 
congested roadway. The stable traveling waves 
arise as there is an interval of car spacing for 
which the constant solutions are unstable. These 
waves consist of a smooth part where both the 
velocity and spacing between successive cars are 
increasing functions of a Lagrange mass index. 

Borsche, Kimathi and Klar [8] reviewed 
and numerically compared a special class of 

multiphase traffic theories based on 
microscopic, kinetic and macroscopic traffic 
models, and found that for all models, but one, 
phase transitions can appear near bottlenecks 
depending on the local density and velocity of 
the flow. 

By applying and extending methods 
from statistical physics and nonlinear dynamics 
to self-driven many-particle systems, Helbing 
[12] answered some questions about traffic 
flows, such as: Why are vehicles sometimes 
stopped by ‘phantom traffic jams’even though 
drivers all 
like to drive fast? What are the mechanisms 
behind stop-and-go traffic? Why are there 
several 
different kinds of congestion, and how are they 
related? etc. Nagatani [13] reported that traffic 
systems display a surprisingly rich spectrum of 
spatial-temporal pattern formation phenomena. 
These phenomena can be explored by using the 
car-following models [14], the cellular 
automaton models [15–17]), the gas-kinetic 
models or the fluid-dynamical models [4–6]. 
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 Currently, continuum traffic flow 
modelling is developing in a number of 
directions. Some of new models concentrate on 
the methods of determining the optimal model 
parameters for the model equations [20-22]. 
Other developed models taking into account 
different types of vehicles or different driving 
styles [23] or models with deeper view on 
information propagation across the traffic [24]. 
Another approach using discrete approximation 
for public traffic and passengers’ interaction is 
illustrated by [25,26]. Finally, some models 
expanded to two-dimensions to describe the 
traffic flow on multilane roads [27]. 

Some notable researches about 
macroscopic traffic models can be found in 
Refs. [28–34], with the sensitivity of traffic flow 
to viscoelasticity reported recently by Smirnova 
et al. [35, 36]. While for travel time prediction, a 
relatively detail background has been given in 
Ref. [37], with some more recent work reported 
in Refs. [38–41]. 
The present research was aimed at creating a 
method for effective modelling of traffic flows 
on crossroads and road junctions, where massive 
line-changing significantly affect velocity and 
density of the flow. Moreover, presented multi-
component model can be used to simulate traffic 
flows consisting of different types of vehicles 
with different behaviour (cars, trucks, buses 
etc.). 

2. The continua model of 
traffic flows 
We introduce Euler’s coordinate system with the 
Ox  axis directed along the auto route and the 
Oy axis directed across the traffic flow. Time is 
denoted by 𝑡𝑡. The average flow density 
𝜌𝜌(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) is defined as the relation of the surface 
of the road occupied by vehicles to the total 
surface of the road considered (by the ‘occupied 
surface’ we mean the surface physically 
occupied by the vehicle and the area necessary 
to keep safe distance betveen vehicles, the so-
called “ 
dynamic clearance”): 

𝜌𝜌 =
𝑆𝑆𝑡𝑡𝑡𝑡
𝑆𝑆

=
ℎ𝑁𝑁𝑁𝑁
𝐻𝐻𝐻𝐻

=
𝑛𝑛𝑁𝑁
𝐻𝐻

, 
where ℎ is the lane width, H is the sample road 
width, 𝐻𝐻 is the sample road length, 𝑁𝑁 is an 
average vehicle’s length plus a minimal distance 
between jammed vehicles, 𝑁𝑁 is the number of 
vehicles on the road, n is the mean number of 
vehicles on the lane. With this definition, the 
density is dimensionless changing from zero to 
unit. 

The flow velocity denoted 𝑉𝑉(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =
𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡), 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡)), where 𝑢𝑢 can vary from 
zero to 𝑈𝑈𝑚𝑚𝑚𝑚𝑥𝑥 , where 𝑈𝑈𝑚𝑚𝑚𝑚𝑥𝑥  is maximal permitted 
road velocity. From definitions, it follows that 
the maximal density 𝜌𝜌 = 1 relates to the case 
when vehicles stay bumper to bumper. It is 
natural to assume that the traffic jam with 𝑉𝑉 = 0 
will take place in this case.   
Determining the “mass” distributed on a road 
sample of the area S as:  
𝑚𝑚 = ∫ 𝜌𝜌ⅆ𝑥𝑥𝑥𝑥𝑦𝑦𝑆𝑆 , 
one can develop a “mass conservation law” in 
the form of continuity equation:  
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

+ 𝜕𝜕(𝜌𝜌𝑢𝑢 )
𝜕𝜕𝑥𝑥

+ 𝜕𝜕(𝜌𝜌𝑣𝑣 )
𝜕𝜕𝑦𝑦

= 0  (1) 

Then, we derive equation for the traffic 
dynamics. The traffic flow is determined by 
different factors: drivers’ reaction to the road 
situation, drivers’ activity and vehicles response, 
technical features of vehicles. The following 
assumptions were made in order to develop the 
model:  
• It is the average motion of the traffic 

described and not the motion of individual 
vehicles, that is modeled. Consequently, the 
model deals with the mean features of the 
vehicles not accounting for variety in power, 
inertia, braking distances, etc.  

• The “natural” reaction of all the drivers is 
assumed. For example, if a driver sees red 
lights, or a velocity limitation sign, or a 
traffic hump ahead, he is expected to 
decelerate until full stop or until reaching a 
safe velocity, and not to keep accelerating 
with further emergency braking.  

•   It is assumed that the drivers are loyal to 
the traffic rules. In particular, they accept 
the velocity limitation regime and try to 
maintain the safe distance depending on 
velocity.  

The velocity equation for the x-component is 
then written as follows:  

�𝑥𝑥𝑢𝑢
𝑥𝑥𝑡𝑡
� = 𝑚𝑚,   𝑚𝑚 = max{−𝑚𝑚−;𝑚𝑚𝑚𝑚𝑛𝑛{𝑚𝑚+,𝑚𝑚𝑥𝑥}} ; 

𝑚𝑚𝑥𝑥 = 𝜎𝜎𝑚𝑚𝜌𝜌 + (1−𝜎𝜎)
𝛥𝛥

� 𝑚𝑚𝜌𝜌(𝑡𝑡, 𝑠𝑠)ⅆ𝑠𝑠
𝑥𝑥+𝛥𝛥

𝑥𝑥
+ 𝑈𝑈(𝜌𝜌)−𝑢𝑢

𝜏𝜏
;  

𝑚𝑚𝜌𝜌 =  −
𝑘𝑘2

𝜌𝜌
�𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥�+

 

Here, 𝑚𝑚 is the acceleration of the traffic flow; 𝑚𝑚+ 
is the maximal positive acceleration, 𝑚𝑚− is the 
emergency braking deceleration; 𝑚𝑚+ and 𝑚𝑚− are 
positive parameters which are determined by 
technical features of the vehicle. Subscripts plus 
and minus denote derivative from the right and 
from the left respectfully. The parameter 𝑘𝑘 > 0 
is the small disturbances propagation velocity 
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(“sound velocity”), as it was shown in [42]. The 
parameter 𝜏𝜏 is the delay time which depends on 
the finite time of a driver’s reaction to the road 
situation and the vehicle’s response. This 
parameter is responsible for the drivers tendency 
to keep the vehicles velocity as close as possible 
to the safe velocity depending on the traffic 
density 𝑈𝑈(𝜌𝜌): 

𝑈𝑈(𝜌𝜌) = �
𝑘𝑘 ln𝜌𝜌 , 𝑢𝑢 < 𝑈𝑈𝑚𝑚𝑚𝑚𝑥𝑥

min{𝑈𝑈𝑚𝑚𝑚𝑚𝑥𝑥 ;𝑘𝑘 ln𝜌𝜌} , 𝑢𝑢 ≥ 𝑈𝑈𝑚𝑚𝑚𝑚𝑥𝑥
.� 

The velocity 𝑈𝑈(𝜌𝜌) is determined from the 
dependence of the traffic velocity on density in 
the “plane wave” when the traffic is starting 
from the initial conditions 𝜌𝜌0 = 1 and 𝑢𝑢 = 0, 
with account of velocity upper bound (𝑢𝑢 <
𝑈𝑈max ). The value of 𝜏𝜏 could be different for the 
cases of acceleration or deceleration to the safe 
velocity 𝑈𝑈(𝜌𝜌):  

𝜏𝜏 =  �𝜏𝜏
+, 𝑈𝑈(𝜌𝜌) < 𝑢𝑢
𝜏𝜏−, 𝑈𝑈(𝜌𝜌) ≥ 𝑢𝑢. � 

In the formula for 𝑚𝑚𝑥𝑥  the first term describes an 
influence on the driver’s reaction in a local 
situation, the second – a situation ahead the flow 
and the third – a driver’s tendency to drive a car 
with the velocity which is the safest in each 
case. If we assume 𝜎𝜎 = 0, then the expression 
for 𝑚𝑚𝑥𝑥  will be: 

𝑚𝑚𝑥𝑥 =
1
Δ
� 𝑚𝑚ρ(t, S)ⅆs
x+Δ

x

+
𝑈𝑈(𝜌𝜌) − 𝑢𝑢

𝜏𝜏
 

In this case acceleration is not a local parameter, 
but depends on its values in the region of length 
Δ ahead of vehicle, where Δ - is the distance 
each driver takes into account on making 
decisions. This distance depends on road and 
weather conditions. The last term of the 
relaxation type takes into account tendency to 
reach optimal velocity. 
If we assume 𝜎𝜎 = 1, then the expression for 𝑚𝑚′ 
will be: 

𝑚𝑚𝑥𝑥 = 𝑚𝑚𝜌𝜌 +
𝑈𝑈(𝜌𝜌) − 𝑢𝑢

𝜏𝜏
 

Now acceleration depends on local situation 
only. 
We will consider a case when 𝜎𝜎 = 1, 𝜏𝜏 = ∞, so 
the equation of motion for the x-component is: 
𝑚𝑚𝑥𝑥 =  −𝑘𝑘2

𝜌𝜌
�𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥
�

+
    (2) 

The equation of motion for the y-component we 
can write in such form as for the x direction: 
𝑚𝑚𝑦𝑦 =  −𝐴𝐴2

𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

.  (3) 
The description for parameter A will be given 
below. 
In order to understand the physical meaning of 
the parameter A we shall consider the following 
model problem. One car is changing its lane 

with the density 𝜌𝜌 ≠ 0 to the lane with the 
density 𝜌𝜌 = 0. In this case a car has the 
maximum acceleration 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 . So by putting 
𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

= 0−𝜌𝜌
ℎ

 to the velocity equation for the y-

component we can obtain 𝜌𝜌 𝑥𝑥𝑣𝑣
𝑥𝑥𝑡𝑡

=  −𝐴𝐴2 𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

  and 

then 𝐴𝐴
2

ℎ
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 . 

The diagram for the v(y) is shown in Fig.1. 
According to it we have: 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = �𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 ℎ , that 

is 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑥𝑥2

ℎ
 or 𝐴𝐴2 =  𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥2 . But in this model 

𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 2𝑣𝑣𝑚𝑚𝑣𝑣  (𝑣𝑣𝑚𝑚𝑣𝑣  is an average speed of car's 
changing a lane), so 𝐴𝐴2 = 4𝑣𝑣𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥

2,  where 𝑣𝑣𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥  
is the average speed for 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 . 

 

Fig 1: Lane's changing velocity 
 
For the description of lane change dynamics, we 
approximately assume that the trajectory of 
maneuver of lane’s changing is assembled of 
two parts of identical circles (Fig.2). In Fig.2 the 
bold line is a trajectory of lane’s changing and it 
begins in the middle of the lane on which the car 
is going and ends in the middle of the next lane. 

 

Fig 2: Simplified lane's changing trajectory 
The centripetal force which acts on the car is: 
𝐹𝐹 = 𝑚𝑚𝑉𝑉2

𝑅𝑅𝑡𝑡𝑢𝑢𝑡𝑡𝑛𝑛
, where 𝑅𝑅𝑡𝑡𝑢𝑢𝑡𝑡𝑛𝑛  is the radius of the turn, 
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𝑉𝑉 - is the velocity of the car, directed by the 
tangent to the car’s trajectory. Let 𝐹𝐹∗ be the 
maximum possible flank force under which car 
is drivable (not skidding), 𝐹𝐹 ≤ 𝐹𝐹∗. Then we can 
calculate the radius of the turn   𝑅𝑅𝑡𝑡𝑢𝑢𝑡𝑡𝑛𝑛 = 𝑚𝑚

𝐹𝐹∗
𝑉𝑉2, 

𝑣𝑣𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑉𝑉 sin𝜃𝜃. From  similar triangles Δ𝐴𝐴𝐴𝐴𝐴𝐴 
and Δ𝑂𝑂𝐴𝐴𝑂𝑂 (Fig.2) derive that 𝐴𝐴𝑂𝑂 = 𝑂𝑂𝐴𝐴, 
labeling 𝐴𝐴𝑂𝑂 = 𝑏𝑏 will get: 
 

𝑏𝑏
𝑅𝑅

=
ℎ

4𝑏𝑏
 𝑜𝑜𝑡𝑡 𝑏𝑏2 =

𝑅𝑅ℎ
4

, 

𝑠𝑠𝑚𝑚𝑛𝑛𝜃𝜃 =
ℎ

4𝑏𝑏
=
𝑏𝑏
𝑅𝑅

=
√𝑅𝑅ℎ
2𝑅𝑅

=
1
2
�ℎ
𝑅𝑅

.  

Then  

𝑣𝑣𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑉𝑉𝑠𝑠𝑚𝑚𝑛𝑛𝜃𝜃 =
1
2
𝑉𝑉�

ℎ
𝑅𝑅

=
1
2
𝑉𝑉��

ℎ𝐹𝐹∗
𝑚𝑚𝑉𝑉2

�

=
1
2
�ℎ𝐹𝐹∗
𝑚𝑚

 

 
 that is the average speed for 𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥  is 𝑣𝑣av

max =
1
2
�hF ∗

m
. We obtained above 𝐴𝐴2 = 4𝑣𝑣𝑚𝑚𝑣𝑣2 ,  so the 

expression for 𝐴𝐴 is 𝐴𝐴2 = ℎ𝐹𝐹∗
𝑚𝑚

. 
Thus  we derived parameter𝐴𝐴2 being dependent 
on the force 𝐹𝐹∗, assignable to the lane width, the 
mass of car and the traction of tires. 
The equations (1), (2), (3) provide a system 
describing traffic flows on multilane roads. 
Assuming the presence of 3 groups of cars 
before each crossing characterized by different 
motivations: going straight, turning left and 
turning right, one can describe their motivations 
by introducing different mass forces acting on 
each group of cars and making them move 
towards right, central or left lanes, as well as 
slow down the speed of their motion on 
approaching the crossing. 
 

𝜕𝜕𝜌𝜌𝑚𝑚
𝜕𝜕𝑡𝑡

+
𝜕𝜕(𝜌𝜌𝑢𝑢)𝑚𝑚
𝜕𝜕𝑥𝑥

+
𝜕𝜕(𝜌𝜌𝑣𝑣)𝑚𝑚
𝜕𝜕𝑦𝑦

= 0, 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑢𝑢 �𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
� + 𝑣𝑣 𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
= −𝑘𝑘2

𝜌𝜌
�𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥
�

+
+ 𝑔𝑔  (1) 

𝜕𝜕𝑣𝑣𝑚𝑚
𝜕𝜕𝑡𝑡

+ 𝑢𝑢
𝜕𝜕𝑣𝑣𝑚𝑚
𝜕𝜕𝑥𝑥

+ 𝑣𝑣𝑚𝑚 �
𝜕𝜕𝑣𝑣𝑚𝑚
𝜕𝜕𝑦𝑦

� = −
𝐴𝐴2

𝜌𝜌
�𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦
� + 𝑓𝑓𝑚𝑚  

𝑚𝑚 = 1,2,3;𝜌𝜌 =  𝜌𝜌1 + 𝜌𝜌2 + 𝜌𝜌3, 

𝑣𝑣 =
1
𝜌𝜌

(𝜌𝜌1𝑣𝑣1 + 𝜌𝜌2𝑣𝑣2 + 𝜌𝜌3𝑣𝑣3). 

 
The force slowing down speed before entering 
crossing has the following model form: 
  

𝑔𝑔 =  −(1 − 𝜌𝜌)
𝑈𝑈(𝑡𝑡) − 𝑢𝑢

𝜏𝜏0
exp �

𝑥𝑥0 − 𝑥𝑥
𝑁𝑁𝑠𝑠

�,  

where 𝑁𝑁𝑠𝑠 is the characteristic distance of 
beginning deceleration in front of the crossing 
and traffic lights, 𝜏𝜏0 is characteristic time of 
reaction to traffic light change. 
The forces responsible for the modeling 
motivation for lane changing could be expressed 
as follows: 
 

𝑓𝑓𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧−(1− 𝜌𝜌𝑚𝑚)

𝐴𝐴2

ℎ𝑚𝑚
exp �− 𝑥𝑥0−𝑥𝑥

𝑁𝑁𝑚𝑚
� , 𝑦𝑦 > 𝑦𝑦𝑚𝑚+  

0, 𝑦𝑦𝑚𝑚+ > 𝑦𝑦 > 𝑦𝑦𝑚𝑚−

(1 − 𝜌𝜌𝑚𝑚)
𝐴𝐴2

ℎ𝑚𝑚
exp �− 𝑥𝑥0−𝑥𝑥

𝑁𝑁𝑚𝑚
� , 𝑦𝑦 < 𝑦𝑦𝑚𝑚−

�(2) 

 
𝑦𝑦1
− = 0,𝑦𝑦1

+ = 𝑦𝑦2
− =

𝐻𝐻
3

,𝑦𝑦2
+ = 𝑦𝑦3

− =
2𝐻𝐻
3

,𝑦𝑦3
+

= 𝐻𝐻, 
where ℎ𝑚𝑚  is the respective lane width, H is the 
road width. 
The system of equations (1) presents a continua 
model of traffic flow. The term −𝑘𝑘2

𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

 was 
validated long before in the papers [43] by 
comparing numerical simulation results with 
experimental data provided in papers [2, 11] The 
term −𝐴𝐴2

𝜌𝜌
𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

 is a new one, which was accurately 
derived based on the physical characteristics of 
vehicles and model assumptions. The form of 
body forces 𝑔𝑔 and 𝑓𝑓𝑚𝑚 , (2) are the assumptions of 
the model, which should be validated in 
comparison with experiments. Some 
independent experimental observations should 
be used for determining model parameters. For 
present simulation, we developed model 
parameters based on the available data. The 
qualitative comparison of simulation results with 
the data of direct observations will be provided 
in the section 4. 

3. Numerical solution 
 The problem considered is modelling of car’s 
behaviour on a multilane rectangular road near 
the crossroad accounting for different maneuvers 
.at the cross-road planned by the drivers in 
advance. 

3.1. Using AUSM method 
The main problem in the numerical solving of 
the gas-dynamic equations is difference scheme 
stability. To provide this stability the difference 
scheme has to contain anti-flow differences [44]. 
So we have to build scheme taking into account 
cell interaction and direction of wave 
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propagation through the grid. In AUSM model 
interaction between cells is realized by the 
groups of particles with known velocity 
distribution. To divide this groups on the ‘flow-
oriented’ and ‘anti-flow oriented’ we use the 
flow splitting methods. 
We will solve the following system of equations: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+
𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐺𝐺1

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝐺𝐺2

𝜕𝜕𝑦𝑦
+
𝜕𝜕𝐺𝐺3

𝜕𝜕𝑦𝑦
= 𝑓𝑓, 

𝜕𝜕 =

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1
𝜌𝜌2
𝜌𝜌3
𝜌𝜌𝑢𝑢
𝜌𝜌1𝜈𝜈1
𝜌𝜌2𝜈𝜈2
𝜌𝜌3𝑣𝑣3⎠

⎟
⎟
⎟
⎞

, 𝐹𝐹 =

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1𝑢𝑢
𝜌𝜌2𝑢𝑢
𝜌𝜌3𝑢𝑢

𝜌𝜌𝑢𝑢2 + 𝑘𝑘2𝜌𝜌
𝜌𝜌1𝑢𝑢𝑣𝑣1
𝜌𝜌2𝑢𝑢𝑣𝑣2
𝜌𝜌3𝑢𝑢𝑣𝑣3 ⎠

⎟
⎟
⎟
⎞

,  

𝐺𝐺1 =

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1𝑣𝑣1
0
0

𝜌𝜌1𝑣𝑣1𝑢𝑢
𝜌𝜌1𝑣𝑣1

2 + 𝐴𝐴2𝜌𝜌
0
0 ⎠

⎟
⎟
⎟
⎞

 ,  

𝐺𝐺2 =  

⎝

⎜
⎜
⎜
⎛

0
𝜌𝜌2𝑣𝑣2

0
𝜌𝜌2𝑣𝑣2𝑢𝑢

0
𝜌𝜌2𝑣𝑣2

2 + 𝐴𝐴2𝜌𝜌
0 ⎠

⎟
⎟
⎟
⎞

,  

𝐺𝐺3 =

⎝

⎜
⎜
⎜
⎛

0
0

𝜌𝜌3𝑣𝑣3
𝜌𝜌3𝑣𝑣3𝑢𝑢

0
0

𝜌𝜌3𝑣𝑣3
2 + 𝐴𝐴2𝜌𝜌⎠

⎟
⎟
⎟
⎞

,  

𝑓𝑓 =  

⎝

⎜
⎜
⎜
⎜
⎛

0
0
0

𝜌𝜌𝑔𝑔 + 𝜌𝜌 𝑈𝑈(𝜌𝜌)−𝑢𝑢
𝜏𝜏

𝜌𝜌1𝑓𝑓1
𝜌𝜌2𝑓𝑓2
𝜌𝜌3𝑓𝑓3 ⎠

⎟
⎟
⎟
⎟
⎞

. 

For convenience we denote 𝑘𝑘
2

𝜌𝜌𝑚𝑚

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

 and 𝐴𝐴
2

𝜌𝜌𝑚𝑚

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

 as 𝑝𝑝𝑥𝑥  
and 𝑝𝑝𝑚𝑚𝑦𝑦  respectively. 
The first step to build the AUSM scheme is to 
divide the flow on convective flow and 
compressive flow: 

𝐹𝐹 = 𝐹𝐹𝑐𝑐 + 𝐹𝐹𝑝𝑝 , 𝐺𝐺𝑚𝑚 = 𝐺𝐺𝑚𝑚𝑐𝑐 + 𝐺𝐺𝑚𝑚
𝑝𝑝 , 

𝑀𝑀𝑥𝑥 =
𝑢𝑢
𝑘𝑘

, 𝑀𝑀𝑚𝑚𝑦𝑦 =
𝑣𝑣𝑚𝑚
𝐴𝐴

, 

𝐹𝐹𝑐𝑐 = 𝑀𝑀𝑥𝑥

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1𝑘𝑘
𝜌𝜌2𝑘𝑘
𝜌𝜌3𝑘𝑘
𝜌𝜌𝑢𝑢𝑘𝑘
𝜌𝜌1𝑣𝑣1𝑘𝑘
𝜌𝜌2𝑣𝑣2𝑘𝑘
𝜌𝜌3𝑣𝑣3𝑘𝑘⎠

⎟
⎟
⎟
⎞

,  𝐹𝐹𝑝𝑝 =

⎝

⎜
⎜
⎜
⎛

0
0
0
𝑘𝑘2𝜌𝜌

0
0
0 ⎠

⎟
⎟
⎟
⎞

,  

𝐺𝐺1
𝑐𝑐 = 𝑀𝑀1𝑦𝑦

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1𝐴𝐴
0
0

𝜌𝜌1𝐴𝐴𝑢𝑢
𝜌𝜌1𝐴𝐴𝑣𝑣1

0
0 ⎠

⎟
⎟
⎟
⎞

, 𝐺𝐺1
𝑝𝑝 =

⎝

⎜
⎜
⎜
⎛

0
0
0
0
𝐴𝐴2𝜌𝜌

0
0 ⎠

⎟
⎟
⎟
⎞

,  

𝐺𝐺2
𝑐𝑐 =  𝑀𝑀2𝑦𝑦

⎝

⎜
⎜
⎜
⎛

0
𝜌𝜌2𝐴𝐴

0
𝜌𝜌2𝐴𝐴𝑢𝑢

0
𝜌𝜌2𝐴𝐴𝑣𝑣2

0 ⎠

⎟
⎟
⎟
⎞

, 𝐺𝐺2
𝑝𝑝 =  

⎝

⎜
⎜
⎜
⎛

0
0
0
0
0
𝐴𝐴2𝜌𝜌

0 ⎠

⎟
⎟
⎟
⎞

,  

𝐺𝐺3 = 𝑀𝑀3𝑦𝑦

⎝

⎜
⎜
⎜
⎛

0
0
𝜌𝜌3𝐴𝐴
𝜌𝜌3𝐴𝐴𝑢𝑢

0
0

𝜌𝜌3𝐴𝐴𝑣𝑣3⎠

⎟
⎟
⎟
⎞

, 𝐺𝐺3
𝑝𝑝 =

⎝

⎜
⎜
⎜
⎛

0
0
0
0
0
0
𝐴𝐴2𝜌𝜌⎠

⎟
⎟
⎟
⎞

. 

𝐹𝐹𝑐𝑐 ,𝐺𝐺𝑚𝑚𝑐𝑐—convective flows, 𝐹𝐹𝑝𝑝 ,𝐺𝐺𝑚𝑚
𝑝𝑝—compressive 

flows, 𝑀𝑀𝑥𝑥 ,𝑀𝑀𝑦𝑦𝑚𝑚  – Mach numbers. Convective 
flows are expressed through Mach numbers and 
column of ‘passive’ values. Compressive flows 
contain only pressure.  Firstly, consider the 
convective flows. Indexes ‘R’ and ‘L’ denote 
values on the ‘left’ and ‘right’ of the cells. 
Convective flows at the cell boundary will be 
expressed in the following form: 

𝐹𝐹𝐴𝐴 = 𝑀𝑀𝑥𝑥

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1𝑘𝑘
𝜌𝜌2𝑘𝑘
𝜌𝜌3𝑘𝑘
𝜌𝜌𝑢𝑢𝑘𝑘
𝜌𝜌1𝜈𝜈1𝑘𝑘
𝜌𝜌2𝑣𝑣2𝑘𝑘
𝜌𝜌3𝑣𝑣3𝑘𝑘⎠

⎟
⎟
⎟
⎞

𝐻𝐻/𝑅𝑅

,

𝐺𝐺1
𝑒𝑒 = 𝑀𝑀1𝑦𝑦

⎝

⎜
⎜
⎜
⎛

𝜌𝜌1𝐴𝐴
0
0

𝜌𝜌1𝐴𝐴𝑢𝑢
𝜌𝜌1𝑣𝑣1𝐴𝐴

0
0 ⎠

⎟
⎟
⎟
⎞

𝐻𝐻/𝑅𝑅

 etc. 

3.2 Splitting the convective flows 
The main concept of the AUSM approach is that 
all flows at the cell boundary are split with 
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respect to Mach number. It means that all 
‘passive’ values transport from the cell from 
which the flow is directed. We will consider this 
method in ‘x’ direction. For all flows in ‘y’ 
direction reasoning is identical up to indexes. 

𝑀𝑀𝑥𝑥𝐻𝐻 𝑅𝑅⁄ = �𝑀𝑀𝑥𝑥𝐻𝐻 , 𝑀𝑀𝑥𝑥 ≥ 0
𝑀𝑀𝑥𝑥𝑅𝑅 , 𝑀𝑀𝑥𝑥 < 0

� 

We have to split convective velocity 𝑀𝑀𝑥𝑥  into the 
‘left’ 𝑀𝑀𝑥𝑥𝐻𝐻

+  and ‘right’ 𝑀𝑀𝑥𝑥𝑅𝑅
−  input. We will search 

for the functions 𝑀𝑀𝑥𝑥𝐻𝐻
+  and 𝑀𝑀𝑥𝑥𝑅𝑅

−  satisfying 
following conditions: 

1. 𝑀𝑀𝑥𝑥 = 𝑀𝑀𝑥𝑥𝐻𝐻
+ +𝑀𝑀𝑥𝑥𝑅𝑅

− ; 
2. 𝑀𝑀𝑥𝑥𝐻𝐻

+ ≥ 0,𝑀𝑀𝑥𝑥𝑅𝑅
− ≤ 0; 

3. 𝑀𝑀𝑥𝑥𝐻𝐻
+ (𝑀𝑀𝑥𝑥) =  −𝑀𝑀𝑥𝑥𝑅𝑅

− (−𝑀𝑀𝑥𝑥); 
4. 𝑀𝑀𝑥𝑥𝐻𝐻

+ = 𝑀𝑀𝑥𝑥 ,𝑀𝑀𝑥𝑥 ≥ 1; 𝑀𝑀𝑥𝑥𝑅𝑅
− = 𝑀𝑀𝑥𝑥 ,𝑀𝑀𝑥𝑥 ≤

−1; 
5. Functions are continuous and 

monotonically increasing; 
6. Functions are continuously 

differentiable 
Using the 4th condition we obtain the following 
expression: 

𝑀𝑀𝑥𝑥𝐻𝐻/𝑅𝑅
± = �

1
2

(𝑀𝑀𝑥𝑥 ± |𝑀𝑀𝑥𝑥 |), |𝑀𝑀𝑥𝑥 | ≥ 1;

𝑔𝑔(𝑀𝑀𝑥𝑥), |𝑀𝑀𝑥𝑥 | < 1.
� 

Splitting function 𝑔𝑔(𝑀𝑀𝑥𝑥) is found as least-order 
polynomial. Using the 6th condition and the 
value of 𝑀𝑀𝑥𝑥𝐻𝐻/𝑅𝑅

±  in case of 𝑀𝑀𝑥𝑥 =  ±1 we obtain: 

𝑔𝑔± =  ±
1
4

(𝑀𝑀𝑥𝑥 ± 1)2 
So we, finally, have 

𝑀𝑀𝑥𝑥𝐻𝐻/𝑅𝑅
± = �

1
2

(𝑀𝑀𝑥𝑥 ± |𝑀𝑀𝑥𝑥 |), |𝑀𝑀𝑥𝑥 | ≥ 1;

 ±
1
4

(𝑀𝑀𝑥𝑥 ± 1)2, |𝑀𝑀𝑥𝑥 | < 1.
� 

3.3 Splitting the compressive flows 
Similarly, pressure 𝑝𝑝𝑥𝑥  split into ‘left’ and ‘right’ 
input: 

𝑝𝑝𝑥𝑥 =  𝜋𝜋𝑥𝑥𝐻𝐻+ + 𝜋𝜋𝑥𝑥𝑅𝑅−  
We will search for functions, which will satisfy 
the following conditions: 

1. 𝑝𝑝𝑥𝑥 =  𝜋𝜋𝑥𝑥𝐻𝐻+ +  𝜋𝜋𝑥𝑥𝑅𝑅− ; 
2. 𝜋𝜋𝑥𝑥𝐻𝐻+ ≥ 0, 𝜋𝜋𝑥𝑥𝑅𝑅− ≥ 0; 
3. 𝜋𝜋𝑥𝑥𝐻𝐻+ (𝑀𝑀𝑥𝑥) =  𝜋𝜋𝑥𝑥𝑅𝑅− (−𝑀𝑀𝑥𝑥); 
4. 𝜋𝜋𝑥𝑥𝐻𝐻+ = 𝑝𝑝𝑥𝑥 ,𝑀𝑀𝑥𝑥 ≥ 1; 𝜋𝜋𝑥𝑥𝑅𝑅− = 𝑝𝑝𝑥𝑥 ,𝑀𝑀𝑥𝑥 ≤

−1; 
5. Functions are continuous, 

𝜋𝜋𝑥𝑥𝐻𝐻+ monotonically increases, 𝜋𝜋𝑥𝑥𝑅𝑅−  
monotonically decreases; 

6. Functions are continuously 
differentiable. 

In the same way as for convective flows we 
obtain the expression to the  
𝜋𝜋𝑥𝑥𝐻𝐻/𝑅𝑅

±

= �

𝑝𝑝𝑥𝑥
2

(1 ± 𝑠𝑠𝑚𝑚𝑔𝑔𝑛𝑛(𝑀𝑀𝑥𝑥)), |𝑀𝑀𝑥𝑥 | ≥ 1;

 𝑝𝑝𝑥𝑥 ±
1
4

(𝑀𝑀𝑥𝑥 ± 1)2(2∓𝑀𝑀𝑥𝑥), |𝑀𝑀𝑥𝑥 | < 1.
� 

 

4. Solving a test problem 

Initially, traffic flow has a density 𝜌𝜌 =  𝜌𝜌0 of 
which 𝜌𝜌1 =  𝜌𝜌2 = 𝜌𝜌0

4
, 𝜌𝜌2 = 𝜌𝜌0

2
. The initial 

velocity of the flow is  𝑢𝑢 = 𝑢𝑢𝑜𝑜 ,  𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣3 =
0. 
Boundary conditions for x=0:  𝜌𝜌𝑚𝑚𝑢𝑢 = 𝑞𝑞𝑚𝑚  
and 𝑞𝑞1 = 𝑞𝑞2 = 𝑞𝑞0

4
, 𝑞𝑞2 = 𝑞𝑞0

2
. 

Boundary conditions for x=L depend on the flow 
velocity:  
if  𝑢𝑢 < 𝑘𝑘,  𝜕𝜕𝜌𝜌𝑢𝑢

𝜕𝜕𝑥𝑥
= 0 , 𝜕𝜕𝜌𝜌𝑚𝑚𝑢𝑢𝑚𝑚

𝜕𝜕𝑦𝑦
= 0, 𝑚𝑚 = 1,2,3   

if 𝑢𝑢 ≥ 𝑘𝑘 there is no boundary condition. 
  
The numerical calculations of the problems were 
processed using the AUSM method. Other 
parameters are given below: 
The mesh had 𝑁𝑁𝑥𝑥 = 201 and 𝑁𝑁𝑦𝑦 = 21 grid 
nodes.  
 𝑇𝑇 = 90 s – calculation time; 
𝐻𝐻 = 150 m – the length of the domain; 
𝐻𝐻 = 10 m – the width of the domain; 
𝑁𝑁𝑚𝑚 = 50 m – characteristic distance of 
beginning maneuver in front of the crossing; 
𝑁𝑁𝑠𝑠 = 50 m – characteristic distance of beginning 
deceleration in front of the crossing and traffic 
lights; 
𝜏𝜏0 = 3 s – characteristic time of reaction on 
traffic light change; 
𝜌𝜌0 = 0.01 – initial density; 
𝑢𝑢0 = 10.0 m/s – initial velocity of the flow; 
𝑣𝑣𝑚𝑚𝑚𝑚𝑥𝑥 = 20 m/s – maximal permitted road 
velocity;  
𝑘𝑘 = 8 m/s – the small disturbances propagation 
velocity (“sound velocity”) on x axis;  
𝐴𝐴 = 6 m/s – the analogy of k coefficient on y 
axis;  
𝑞𝑞0 = 1  – a flow on the left boundary. 
The results obtained are presented in the form of 
maps for components of velocity and for density 
for different moments of time. 
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Fig 3: 
Density 
T=5 

 

Fig 4: 
Density ρ 
T=10 

 

Fig 5: 
Density ρ 
T=15 

 

Fig 6: 
Density ρ 
T=20 

 

Fig 7: 
Density ρ 
T=90 
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Fig 8: 
Velocity x 
comp. 
T=5 

 

Fig 9: 
Velocity x 
comp. 
T=10 

 

Fig 10: 
Velocity x 
comp. 
T=15 

 

Fig 11: 
Velocity x 
comp. 
T=20 

 

Fig 12: 
Velocity x 
comp. 
T=90 
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Fig 13: 
Density 
𝜌𝜌1 of the 
flow 
turning 
right. 
T=90 

 

Fig 14: 
Density 
𝜌𝜌2 of the 
flow 
moving 
straight 
T=90  

 

Fig 15: 
Density 
𝜌𝜌3 of the 
flow 
turning 
left 
T=90 

 

 

 

As one can see in figures 3-12, the density 
and the velocity of the flow doesn't change 
after 𝑇𝑇 = 20𝑠𝑠. This is, approximately, the 
time it takes to cover the distance 𝐻𝐻 at speed 
of 𝑘𝑘. Thin areas of increased velocity on 
figures 10-12 are, apparently, a consequence 
of decreased density due to changing lines. 
Besides, in figures 13-15 one can see 
densities of each part of the flow. Due to 
symmetrical initial and boundary conditions 
the distribution of 𝜌𝜌1 and 𝜌𝜌3 are symmetrical 
to each other.  

The qualitative comparison with physical 
experimental observation can be performed 
based on result of the vehicles density image 
taken after some time the turning right and 
moving straight directions had been open 
and vehicles passed the crossing, while 
turning left direction is just open (Fig. 16). 
As it is seen from Fig. 16 illustrating the 3-
lanes road, the vehicles turning left density 
is concentrated in the left lane near the 
crossing then gradually spreading to the 
central and right lanes as it is shown in Fig. 
15 for similar conditions. 
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Fig. 16. Image of vehicles turning left density distribution taken after some time the turning right 
and moving straight directions had been open and vehicles passed the crossing, while turning left 
direction is just open.  

 
 

Conclusions 
The mathematical model for traffic flows 
simulations in multilane roads has been 
developed. A model problem for traffic 
evolution in multilane road with different 
lane changing motivations was regarded. 
The results show that on exit segment 
orthogonal fluxes occur in the direction of 
less dense lanes, which leads to decreasing 
flow velocity in that lanes and increasing 
density. This fluxes were counteracted by 
the lane changing due to driver's motivation. 
As a result, the flow becomes steady for, 
approximately, the time needed to cover 
distance of the test road segment at the 
speed of small disturbances propagation. 
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